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Abstract

This paper describes methods for counting the number of non-negative integer
solutions of the system Az = b when A is a non-negative totally unimodular
matrix and b an integral vector of fixed dimension. The complexity (under a unit
cost arithmetic model) is strong in the sense that it depends only on the dimensions
of A and not on the size of the entries of b. For the special case of “contingency
tables” the run time is 2°(Y#1°59) ({ the dimension of the polytope). The method
is complementary to Barvinok’s in that our algorithm is effective on problems of
high dimension with a fixed number of (non-sign) constraints whereas Barvinok’s
algorithms are effective on problems of low dimension and an arbitrary number of
constraints.

1 Introduction

In this paper we are concerned with determining the number of non-negative integer
solutions, z, to the linear system Az = b where A is a non-negative totally unimodular
matrix. Even the restricted “contingency table” version of this problem is P hard in
general.[7] The method applies even when the dimension is not fixed (only the number
of equality constraints need to be fixed). In the application of interest the number of
equality constraints and dimension are simultaneously fixed.

It was shown by Barvinok [2, 1] that counting the number of lattice points in an
integral polytope is solvable in polynomial time when the dimension is fixed. This
method is somewhat difficult to implement (requiring the solution of fixed dimension
integer programs and extensive use of triangulations) so there is still some room for
specialized techniques for specific problems. We remark that the 4 x 4 transportation
(or magic square) polytope is not simple and has a set of vertices that form a non-
primitive simplex. Since Barvinok’s algorithm is based on the additivity of valuations
on simple cones, this means Barvinok’s algorithm must triangulate and may encounter
non-primitive cones.

We also would like to point out the fascinating literature on the dependencies of
counting functions (algebraic relations obeyed by the number of non-negative integer
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solutions to various linear systems- allowing the computation of solutions for new sys-
tems with no additional counting).[4, 17, 18] While there is a theory how to solve
counting problems directly using algebraic information (‘“Todd classes” [8]), the less
delicate method of using the algebraic dependencies directly on counts (and using brute
force to compute the required values) seems fairly effective [13].

Throughout the paper, A is a non-negative totally unimodular nonnegative m row
by n column matrix of full row rank. Without loss of generality we will assume that
there is no nonzero nonnegative vector x such that Az < 0. We are interested in
computing the number of non-negative integral solutions to Az = b, b € Z™ > 0. Set
B = max; b;, and let #({...}) denote the number of items in the set {...}.

2 Method

We are striving for a “strong” solution to the counting problem. That is: an algorithm
with run time, under the unit cost arithmetic model on numbers of size commensurate
with the desired answer, depends only on the order of A and not on the magnitude of
the entries of b.

We show that for a fixed matrix A the function f4(b) : Z™ — Z that computes
the number of nonnegative integral solutions to the system Ax = b is a piecewise
polynomial in b with degree n — m and no more than (m(;))m pieces. Our method
is: for a given b determine the piece and derive the polynomial p on that section. We
then evaluate p(b) to get the desired value of f4(b). Determining which polynomial
to use is simple: our decomposition is into polyhedral cones, each defined by no more
than m(:;) linear inequalities. To find the cone our problem falls in we do not need to
compute the entire decomposition (or “fan”), but only inspect the m (;LL) linear inequal-
ities. The required polynomial is derived by solving (;;) counting problems involving
numbers of size no more than m™/? and then applying an interpolation formula.

To solve the (:fl) smaller problems required by the interpolation formula we exhibit
two methods that have proved useful in practice. The first method is a divide and con-
quer approach that has proven useful for problems where b has small norm. The other
method we call the “even/odd” approach and can solve the needed sub-problems in time
20(mlogm) in general. For the “magic square” case which has dimension d = O(m?)
this yields a runtime of 20(Vdlogd) log B using the “even/odd” approach directly and
a runtime of 20(Vdlogd) using the interpolation approach outlined above (even after

allowing for the time to identify which cone we are in and perform the interpolation).

2.1 Piecewise Polynomiality

Throughout this note, P will be a lattice polytope, that is a polytope such that all
vertices have integer coordinates. A famous theorem of Ehrhart is that as k ranges
over the non-negative integers the number of integral points in the polytope kP is a
polynomial in k& with degree the dimension of the smallest affine space containing P
(see [11]).



In fact the result immediately strengthens into an analogue of the so called “mixed
volumes” of convex geometry (the symbol + denotes the Minkowski sum).

Theorem 1 (McMullen,Bernstein) For any lattice polytopes Py, - -+, Py C RY and
integers ki,---,ky >0

f(k1PL+ -+ kpPoyr) =
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The counting function f4(b) (mentioned above) is not itself a single polynomial
for the simple reason that there are A, by, bo such that the polytopes Ax = by, = > 0
and Az = by, x > 0 do not Minkowski sum to the polytope Az = by + by, x > 0.
An example is the set of contingency tables given by
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Foro C {1,2,---,n} of cardinality m, let A, be the m x m matrix formed by the
columns of A indexed by ¢. Similarly for any vector v let v, be the entries of v indexed
by o. Let I be the set of o such that det(A, ) # 0. Let ¥ be the set of all 7 € IR™ such
that there exists o € I such that 7 is a row of A 1. This divides the positive orthant in



IR™ into a collection of equivalence classes such that for by, by € IR™ we have by = by
iff r-by >0 < r-by >0 Vr € U. We are interested in the largest dimensional cones
in this “fan.” We say b1, b are in the same cone iff (r - by) X (r-by) > 0 Vr € 0.

Theorem 2 If by and by are in the same cone then the Minkowski sum of the polytopes
Ax =by, x > 0and Ax = ba, x > 0 is equal to the polytope Ax = by + ba, x > 0.

Sketch of proof: We shall use P, to denote the polytope given by the linear system
Ax = b, x > 0. It is easy to show that P, + Py, C P, 41, and that all three of
these polytopes are bounded. Also, b; and by being in the same cone implies that by,
by and by + bo are all in the same cone (though this is not, in general, a transitive
relationship). For o € T and u € IR™ we define v(o, u) to be the vector in IR" such
that v(o,u); = 0 Vi ¢ o and v(0,u), = A 'u. All vertices of Az = b are of the form
v(o,b) (though v(o, b) is not always a vertex or even always in P).

Let v be an arbitrary vertex of Py, 15, and o be such that v = v(o,b; + b2). We
note that v(o,by) + v(o,bs) = v(0o, by + b2) and the “in the same cone” relationship
guarantees that v(o,by) € Py, and v(o, ba) € Pp,. The arbitrary choice of v completes
the proof.

There are no more than m (:1) elements in ¥ so the orthant is split into no more than

(m(;) ) " cones. By combining Theorem 1 with Theorem 2 we see that the restriction
of the counting function f4 (b) to any of these cones is a polynomial of degree no more
than n — m.[4, 17, 18]

2.2 Interpolation

We now have a decomposition of the positive orthant into cones such that f4(b) re-
stricted to any cone is an unknown polynomial of degree n — m. It remains to, for
a given cone, derive the polynomial. The method we use is to find an integral point
y in the interior of the cone. The polynomial for a cone is completely determined
by the values of f4((n —m)y + A) where A runs over all () nonnegative integral
vectors in the simplex S,,_,, in Z™ such that 1 - A < n — m. We call the required
fal(n —m)y + A) “small sub-problems” and describe how to solve them in the next
section. With the small sub-problem solutions in hand, the interpolation can be done
very quickly. We introduce the multivariate “Lagrange polynomial” I, , 4(-) which al-
lows us to perform the interpolation without having to (computationally) invert a (7’;)
by () matrix. In this notation we call b € Z™ the “base”, + € Z™ is such that
x —b € Sq and d is the degree. We define I, , 4(-) as the unique polynomial map from
Z™ — IR of degree d such that I}, ; q(z) = 1 and [, , 4(y) = 0 when y is integral and

y —b € S and y # x. These polynomials have a very simple explicit formula:
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Then the desired polynomial is:

def
p(U) = Z fA((n - m)y + A)l(n—m)y,(n—m)y-i-A,n—m(U)'
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The sum can be evaluated symbolically with v as an indeterminate vector or can be
evaluated very quickly using almost no space if v € Z™ is given explicitly.

2.3 Size of Sub-Problems

By Hadamard’s inequality[14] the system C'y > 0, y > 0 (where the rows of C' or
elements of W or their opposites) representing an arbitrary cone of the type mentioned
above has an integral interior point y such that 3; < m™/?*1 (remember, because A is
totally unimodular all vectors in ¥ are 0, +1). Graham and Sloane studied the equality
version of this problem[10] and Van H. Vi of Yale has shown [19] that the mOm)
bound is essentially best possible.

2.4 Divided and Conquer

For small problems (many of those arising from magic square problems) we have de-
vised a specialized decomposition which we call “divide and conquer.” This method
is similar to that of Chan and Robbins [3] who used it to compute the volume of the
order 7 and order 8 Birkhoff polytopes. To count the number of nonnegative integral
solutions to Az = b we divide the columns of A into two sets of size about nq, no
(n1 4+ ny =mn,ny = [n/2]): A1, Ay and then explicitly enumerate all possible by, by
such that A;z1 = by, x1 > 0and that Asxo = by, w9 > 0 are feasible and by +by = b.
We have a recursive expansion of the form:

t{z|Ax =0, >0, 2 € Z"}) =
Zbl,lw b1 +ba=b,b1,b2€Z™ >0 f({z1[Arzy = b1, © >0, x € Z™M}) x
ﬁ({$2|A2$2 =by, >0, x € an})

This divides a m by n counting problem into no more than B™ sub-problems. We
combine this with dynamic programming, meaning that we take care to never solve
any sub-problem twice. There are no more than nlognB™ possible sub-problems
which is sufficient to yield a runtime of n log n.B>™.

2.5 Zero/One Method

Another method for small problems is the “even/odd” decomposition given by:

f({z|Axz =0, x>0, z € Z"}) =
ZreRA,rgb, r=bmod 2 ﬁ({Z|Z € {O’l}n’ Az = T}) X
f{ylAdy = (b—7)/2, y >0, y € Z"})

where R4 is the set {Az|z € {0,1}"™}. We apply this decomposition recursively
to the non-zero/one problems until we have driven all the entries of b to zero. Again,
for efficiency we use a dynamic programming to avoid recalculating the value of any
sub-problem. We note that in this recursion a limited number of right hand sides (of
the form (b — r)/2) are formed. In fact we solve no more than n" log B non-zero/one
sub-problems.



The zero/one problems themselves can be solved either using the a specialization
of the divide and conquer counter to zero/one problems or by another application of
dynamic programming using the recursive formula:

ﬂ({Z‘Az = lz’ z e {05 1}n}) =
t{zfdar=b, 21 € {0,131} +
f({z2|Aze = b — Al 2 € {0, 1}"71}).

where A' is the first column of A and A is the matrix formed by all columns of A
except the first. Either method yields a run time no worse than 20("10g7)

Combining these observations lets us conclude that the zero/one counter can be
implemented in 20(™1°27) Jog B time. Given our problem size bounds above this is
sufficient to run the entire interpolation method in time 2°(7 1087

3 Contingency Tables

A special problem is to find the number of non-negative matrices that sum to given
row and column totals. Such matrices are called contingency tables.[6] If the matrices
are square and all rows and columns are constrained to sum to the same value then the
matrices are called “magic squares”.[15] As mentioned before counting contingency
tables is §P hard. Counting or uniformly generating contingency tables has applica-
tions in statistics.[5]

The generating function for A X w contingency tables is the following:

11 1

1—xy;
i=1-h, j=1-w iYj

Even for magic squares (h = w, B = each row/column total, m = h +w — 1,
n = (h — 1)(w — 1)) the counting can be troublesome (though no complexity result
is known). Complete expansion of the generating function can require B2" space and
similar time. Dynamic programming methods[9] can perform the calculation using
hB"~1 space. This still yields a rough runtime of B2" as each entry in the dynamic
programming table depends on O(B") previous entries. Young/Ferris diagram based
methods [12] roughly need to store all Young/Ferris diagrams on 2B dots with < h
rows (yielding ~ B"~! storage). Once B is as big as order h? it can be shown that
there are at least (B/(2h))"~! diagrams that are connected to roughly (B/(2h))" 1
diagrams each yielding ~ (B/2h)%"~2 work.

The divide and conquer approach, mentioned above, can be specialized to this prob-
lem and compares favorably to these methods, if performed with care. If A is the matrix
representing the contingency table counting problem, one can always split the columns
of A approximately in half in such a way that both the sub-problems are contingency
table problems with either the width or height halved. By combining with the dynamic
programming technique, we get a runtime of B3"/2 using B" storage.

This runtime is noticed by computing the work done at each stage of a dynamic
programming implementation of divide and conquer. The following table shows how



many problems occur at each level, what their width and height is, how many sub-
problems each problem needs from the next level, and how much work is done at each
level (nodes times connections).

level 1 2 3 4 5 6
nodes 1 B | B Bit Bi" Bk
width h h  h/2 h/2 hj/A h/4
height h  h/2 h/2 h/4 h/4  h/S
edges/node | B» B"/? ph/2 pBh4 ph/t ph/s
work B" Bzt pih  Bh  Bih  pih

For B € o(h%/3) the divide and conquer counter is faster than the even/odd counter
and for B € o(h*/?) the divide and conquer counter takes fewer steps than there are
terms in the multivariate counting polynomial.

4 Computational Results

4.1 zero/one results

The following single 5 x 4 problem was solved in 20 minutes using the zero one method
(a previous solution by the interpolation method took just over one week): There are
exactly 23196436596128897574829611531938753 (=~ 2.3 * 103*) non-negative 5 by
4 integer matrices whose rows sum to [ 182, 778, 3635, 9558, 11110 ] and columns
sum to [ 3046, 5173, 6116, 10928 ].

4.2 4 by 4 contingency tables

The 4 x 4 contingency table problem splits into (after some symmetries are removed)
3694 cones such that the counting function restricts to a degree 9 polynomial in 7 vari-
ables in each cone. This means each polynomial is determined by 11440 coefficients
so can be interpolated from 11440 sufficiently general evaluations. Each of the 3694
tasks seems to represent about 3 hours of Pmax CPU time (using the divide and con-
quer counter), so the total job represented about 1.5 Pmax CPU years. This task was
completed in just over 6 weeks using Peter Stout’s WAX [16] system which effectively
simulates a coarse-grain parallel supercomputer (employing the numerous idle work-
stations at CMU). This polynomial was stored on disk and was able to solve typical
4 x 4 contingency tables (with margins around a couple of hundred) in 3 seconds. This
was made available on the World Wide Web in the form of an online calculator.

4.3 Magic Squares

We know [15] that the number of non-negative integral points in the n x n Birkhoff
polytope (i.e. the number of magic squares) is a polynomial of degree (n — 1)% in r (r
an integer). Denote this polytope by H,, (r). In fact, the stronger result is known that:

o ho-l—hl)\—‘r'-'hd)\d
ZH’H,(T))\ - (1 o A)(n71)2+1
r>0




where d = n? — 3n + 2 and the h; are non-negative integers such that h; = hg—;, ¢ =
0,1,---d.

This means that H7(r) is completely determined by the values of H~(1) through
H7(15) and Hg(r) is completely determined by the values of Hg(1) through Hg(21).
Other authors have reported similar results [3]. These values were computed by the
divide and conquer technique and are tabulated below:

r Hr(r) Hg(r)
1 5040 40320
2 9135630 545007960
3 4662857360 1579060246400
4 936670590450 1455918295922650
5 94161778046406 569304690994400256
6 5562418293759978 114601242382721619224
7 215717608046511873 13590707419428422843904
8 5945968652327831925 1046591482728407939338275
9 123538613356253145400 56272722406349235035916800
10 2023270039486328373811 2233160342369825596702148720
11 27046306550096288483238 68316292103293669997188919040
12 303378141987182515342992 1667932098862773837734823042196
13 2920054336492521720572276 33427469280977307618866364694400
14 24563127009195223721952590 562798805673342016752366344185200
15 183343273080700916973016745 8115208977465404874100226492575360
16 101857066150530294146428615917957029
17 1128282526405022554049557329097252992
18 11161302946841260178530673680176000200
19 99613494890126594335550124219924540800
20 809256770610540675454657517194018680846
21 6031107989875562751266116901999327710720

With these valuations it is trivial to determine both the polynomials Hr(r), Hg(r)
and all the coefficients in the numerators of the generating functions given above. To
derive the polynomials we use H,,(0) =1, H,(—1) = H,(=2) =--- H,(—n+1) =
0and H,(—n —r) = (=1)""1H,(r). Note that the data given here for H-(r) and
Hg(r) obey conjecture (v) on page 26 of [15].
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